

Title: Portable Turbidimeter
Number: PP0010
Release Date: April 16, 2003
Revision Date: April 16, 2003
Version: 1.0

DOCUMENT TYPE: Standard Operating Procedure

DOCUMENT CLASS: Physical Property Procedure

TITLE: Portable Turbidimeter, Model 2100
 US EPA, Method 180.1

PREPARED BY: Alison Millar, Environmental Technician II

REVISED BY: Alison Millar, Environmental Technician II

REVIEWED BY: Stephanie Hull, Environmental Scientist II

APPROVED BY: Marshall K. Cheung, Ph.D., Laboratory Director

Table of Contents

1.	Scope and Application	3
2.	Summary of Method	
3.	Comments	3
4.	Sample Handling and Preservation	3
5.	Interferences	3
5.	Apparatus	3
7.	Reagents	
8.	Procedure	4
9.	Calculation	5
10.	Results	5
11.	Bibliography	5
	Calibration Curve	

Title: Portable Turbidimeter Number: PP0010 Release Date: April 16, 2003 Revision Date: April 16, 2003 Version: 1.0

Document No.:	PP0010-005
Copy provided to:	Marshall K. Cheung
Title:	Laboratory Director
	29 Palms Laboratory
	47-250 Dillon Road
	Coachella, CA 92236
Copy provided by:	Alison Millar
Title:	Environmental Technician II
Date:	July 28, 2004

Title: Portable Turbidimeter
Number: PP0010
Release Date: April 16, 2003
Revision Date: April 16, 2003
Version: 1.0

1. Scope and Application

- 1.1. This method is applicable to the analysis of drinking, surface and saline waters in the range of 0 to 1000 nephelometric turbidity units (NTU).
- 1.2. More turbid samples should be diluted prior to analysis.

2. Summary of Method

- 2.1. The method is based upon a comparison of the intensity of light scattered by the sample under defined conditions with the intensity of light scattered by a standard reference suspension under the same conditions.
- 2.2. The higher the intensity of scattered light, the higher the turbidity.
- 2.3. StablCal standard suspensions are used to create a calibration curve.
- 2.4. Samples are transferred to sample cells that are carefully wiped free of dust and moisture.
- 2.5. Cuvettes are inserted into the chamber with a consistent orientation.
- 2.6. Turbidity units are recorded according to results. (See Results, p.5)

3. Comments

- 3.1. NTU's are considered comparable to the previously reported Formazin Turbidity Units (FTU) and Jackson Turbidity Units (JTU).
- 3.2. Dark glass sample cell should be handled by the securely fastened lid.
- 3.3. Store StablCal standards at room temperature, preferably in drawer labeled Turbidity in 29 Palms Laboratory.
- 3.4. Keep lit closed when not in use.
- 3.5. Make sure that there are no air bubbles in sample cell before placing into Turbidimeter.
- 3.6. Wipe sample cell well with Kimwipe to remove any fingerprints, and apply a drop of silicone oil to exterior of cell to mask any minor imperfections in the surface.
- 3.7. A Formazin calibration should done once every 3 months

4. Sample Handling and Preservation

- 4.1. Preservation of the sample is not practical; analysis should begin as soon as possible.
- 4.2. Refrigeration or icing to 4°C, to minimize microbiological decomposition of solids is recommended.

5. Interferences

- 5.1. Coarse floating debris that settles out rapidly will give unstable low readings.
- 5.2. Presence of color in sample water due to dissolved substances that absorb light will cause turbidities to be low.
- 5.3. Air bubbles will cause higher turbidity readings.

6. Apparatus

- 6.1. Portable Turbidimeter, Model 2100P
- 6.2. Silicone Oil
- 6.3. Oiling cloth
- 6.4. Quick reference card
- 6.5. Four AA batteries

Title: Portable Turbidimeter
Number: PP0010
Release Date: April 16, 2003
Revision Date: April 16, 2003
Version: 1.0

7. Reagents

- 7.1. Reagent Water (NanoPure)
- 7.2. StablCal Turbidity Standards: ≤0.1-NTU, 20-NTU, 100-NTU, 800-NTU

8. Procedure

- 8.1. Turn instrument on
- 8.2. Calibrate the meter.
 - 8.2.1. Insert the "0.1" turbidity sample cell calibration standard into the cell compartment by aligning the orientation mark on the cell with the mark on the front of the cell compartment.
 - 8.2.2. Close shield.
 - 8.2.3. Press CAL and the CAL and S 0 icons will be displayed with the "0" will be flashing.
 - 8.2.4. Press READ on keypad.
 - 8.2.4.1. The instrument will count from 60 to 0, read the blank and use it to calculate a correction factor for the next standard measurement. The display will automatically increment to the next standard.
 - 8.2.5. Remove sample cell.
 - 8.2.6. The display will show S 1 with the "1" flashing and the 20 NTU value.
 - 8.2.7. Insert the "20" cell into the well compartment and close cover.
 - 8.2.8. Press READ.
 - 8.2.8.1. The instrument will count from 60 to 0, read the blank and use it to calculate a correction factor for the next standard measurement. The display will automatically increment to the next standard.
 - 8.2.8.2. If the value is incorrect, edit the value by pressing the \rightarrow key to scroll to the correct number.
 - 8.2.8.3. Repeat sample reading with new 20 NTU standard.
 - 8.2.9. Remove sample cell.
 - 8.2.9.1. The display will show the S 2 with the "2" flashing.
 - 8.2.10. Insert "100" NTU standard sample into the well compartment.
 - 8.2.11. Press READ.
 - 8.2.11.1. The instrument will count from 60 to 0, read the blank and use it to calculate a correction factor for the next standard measurement. The display will automatically increment to the next standard.
 - 8.2.11.2. If the value is incorrect, edit the value by pressing the \rightarrow key to scroll to the correct number.
 - 8.2.12. Remove calibration sample cell.
 - 8.2.12.1. The display will show the S 3 with the "3" flashing and 800 NTU for the next sample.
 - 8.2.13. Place 800 NTU calibration sample cell into well compartment.
 - 8.2.14. Press READ.
 - 8.2.14.1. The instrument will count from 60 to 0.
 - 8.2.14.2. The display will then increment back to SO.
 - 8.2.15. Remove calibration sample cell.
 - 8.2.16. Press CAL to accept the calibration.

8.3. Preform Calibration Curve

8.3.1. Place a known standard in cell compartment

Title: Portable Turbidimeter
Number: PP0010
Release Date: April 16, 2003
Revision Date: April 16, 2003
Version: 1.0

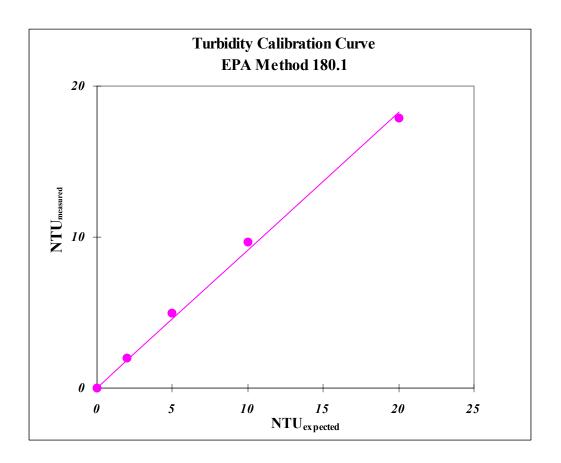
- 8.3.2. Press READ
- 8.3.3. Record Value
- 8.3.4. Place different known standard into cell well.
- 8.3.5. Press READ
- 8.3.6. Record Value
- 8.3.7. Repeat 8.3.1 three more times for a total of five recorded values.
 - 8.3.7.1. Proceed to section 9.0 for calculations
- 8.4. Take sample readings.
 - 8.4.1. Fill sample cell to white horizontal line with sample.
 - 8.4.2. Wipe sample cell well with Kimwipe and lightly oil with silicone and wipe off.
 - 8.4.3. Insert sample cell with vertical line forward.
 - 8.4.4. Close lid.
 - 8.4.5. Press READ
 - 8.4.6. Record value of sample in NTU's.

9. Calculation

- 9.1. Using Excel graph the difference between the expected NTU value and the recorded actual value to find the slope. (See section 12.0 for Calibration Curve)
- 9.2. If created diluted sample.
 - 9.2.1. Multiply sample readings by appropriate dilution to obtain final reading.
 - 9.2.2. Sample calculation: If sample is diluted in half (1:1), the turbidity result would be the value displayed multiplied by two.
 - 9.2.2.1.Diluted sample turbidity reading: 5.4.
 - 9.2.2.2.Turbidity (NTU)= $5.4 \times 2 = 10.8 \text{ NTU}$
 - 9.2.2.3. Reported as 11 NTU (See Results p.5)

10. Results

10.1. Report results as follows:


NTU	Record to nearest:
0.0-1.0	0.05
1-10	0.1
10-40	1
40-100	5
100-400	10
400-1000	50

11. Bibliography

- 11.1. Hach Company Manual for Portable Turbidimeter, Model 2100P (Cat. No. 46500-88)
- 11.2. EPA Method 180.1
- 11.3. Hach Quick Reference Card for Portable Turbidimeter.

Title: Portable Turbidimeter Number: PP0010 Release Date: April 16, 2003 Revision Date: April 16, 2003 Version: 1.0

12. Calibration Curve

Turbidity	Measured		
Expected	Turbidity	RF	
(NTU)	(NTU)		Average RF =0.964
0.00	0.00	-	Std. Dev. =0.0492
2.00	2.00	1.000	Relative % Std. Dev. =5.10
5.00	4.97	0.994	
10.00	9.68	0.968	$R^2 = 0.997$
20.00	17.86	0.893	m = 0.913
			y-intercept =0.00